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Pathology analyzer of human tissues — new tool for
analysis of CT and MRI images

S. N. Solovieva', A.V. Leshinkova', V. S. Urosova?, A. E. Matkin?,

'Scientific and Research Center ,,Avantrend”
2Ural Federal University — Russia, Ekaterinburg

Pestome. PaspabomeHusam ,AHaAu3amop Ha namoAo2uume
Ha YoBewkKume mbKaHu“ uma 3a ueA ga ce yBeauyam guae-
HoCcmMu4HUMe Bb3MOX¥KHOCMU Ha CMaHgapmHume Memogu 3a
uscAegBaHe Ha yBpeskgaHuAa Ha op2aHu U mbKaHu. Mogobps-
BaHemo Ha guazgHOCMUYHUME cnocobHOCMU € nocmugHamo
ypes BvBerkgaHe Ha HOBU Kpumepuu 3a KoauvecmBeHo oue-
HABaHe u copmaAusupaHe Ha guasHOCMuyHUME xapaKme-
pUCMUKU, Kamo cmpyKkmypa U mbKaH Ha nAbmHocm. AHa-
AU3AMOPbM Ha hamoAo2UAMa € MoOgyAHa cucmema, Yuumo
MOQUAU ca Haco4eHU KbM pewaBaHe Ha cneyuduyHa 3agaya
3a nogobpaBaHe Ha u3obpaskeHUEMO, OUeHKa Ha HoBume
Kpumepuu u noAy4aBaHe Ha gonbAHUMEAHa guagHoCMuYHa
uHdopmauuas. Hacmoawama paboma obcbrkga paspabome-
HUMe MOgyAU, NO-CNeyUaAHO cucmemama 3a nogkpena Ha
gudepeHyuarHoguagHOCMUYHUME peweHUn, KOAmMO no3-
BonnaBa ga ce pewam caegHume 3agauvu: a) usyyaBaHe Ha
2paHuyume Ha hamoAo2uAma, Hanpumep — aBmomamuyHo
onpegeAAHe Ha 2paHuUuuUme Ha 2AuoMa Ha YoBewkKuA MO3bK
(kom6uHupaH Memog 3a obpabomra Ha CT u MRI usobpa-
*KeHuA); 6) uscaegBaHe Ha cmpyrkmypama Ha mymopume u
gpyau namoAO2UYHU NPOMEHU C HOBU nogxogu B8 aHaAusa
Ha MeguuuHCKumMe u3obpaskeHun; B) aHaAU3 Ha Ma2HUMHO-
pe30oHaHCHU u3obparkeHua, uanoAsBawu cmolHocmu, Hop-
MaAu3upaHu KbM ckanama Ha Hounsfield. PaspabomeHu ca
MamemMamuyecKku MogeAu 3a Bcaka nogcucmema. OueHrama
Ha pe3ayamamume om u3cAaegBaHuama e u3BbpuwieHa cbB-
MECMHO C MegUUUHCKU cheyuaAucmu om pasAuyeH NPodUA:
pPeHM2eHOA03U, NYAMOAO3U; HeBpoXUpyp3u.

KatouoBu gymu: AHAANSATOP HA NMATOAOI'MYHN NPOMEHMN
B YOBELUKA TbKAH. MUHCTPYMEHT 3A AHAAU3 HA
N30BPAXEHUA. KT. MP

Abstract. The “Analyzer of human tissue pathologies” is
developed to increase the diagnostic capabilities of standard
methods of investigation of organ and tissue damage.
Improvement of diagnostic capabilities are achieved by
introducing new criterions of quantitative valuation and
formalization of diagnostic features, such as structure and
tissue of density. The pathology analyzer is a modular system,
each module of which is aimed at solving a specific task of
image improvement, its evaluation according to new criteria
and obtaining additional diagnostic information. The article
discusses the developed modules, in particular, the differential
diagnostic decision support system, which allows to solve
the following tasks: a) assessment the borders of pathologic
area. — for example - automatic determination of boundaries of
human brain glioma (Combined method of processing CT and
MRI images); b) studying the structure of tumors and other
pathological changes by creating new approaches in medical
images analysis; c) Analysis of MRI images using values
normalized by the Hounsfield scale. Mathematical models for
each subsystem are developed. Relevance assessment and
approbation of the research results is performed with medical
experts of different profile: radiologists, pulmonologists,
neurosurgeons.

Key words: PATHOLOGY ANALYZER OF HUMAN TISSUE. IMAGE
ANALYSIS TOOL. CT. MRI
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Introduction

The introduction of computed tomography and the
magnetic resonance imaging come out on new di-
agnotic level. Despite the constant improvement of
methods, the challenges of accuracy of visualiza-
tion, adequate interpretation and valuation remain
relevant. So, for example, in 2016 research was con-
ducted on the challenge of a large false-positive factor
in the cluster approach of fMRI analysis, and the re-
sults of about 40 000 fMRI analyzes were questioned.

Consequently, both constant work on new research

methods, as well as retrospective analysis, and the

development of new approaches to the existing meth-
ods and methods for their evaluation are going on.

The data about the internal structure of subject
are represented as a DICOM format image. This dig-
ital image in computer interpretation is a matrix, and
the element located at the intersection of its row and
column is called the pixel [17]. Disadvantages of the
DICOM — image are occurrence of noise, averaging
the values in pixels located on the boundary of two
regions [8]. The above listed disadvantages lead to
a difficulty in recognizing the pathology of the tissue
on the images. All this leads to the fact that working
with digital medical images is a complex and time-
consuming process.

Evaluation is carried out by visual analysis of im-
ages by a radiologist. To simplify the work of a doc-
tor, there is a range of commercially available or free
software products. They consist of some amount of
modules displaying and navigating images, working
with multidimensional medical images. Some are in-
tended only for image visualization. Others, in addi-
tion to the basic functions, allow analysis and meas-
urements. Similar universal systems have some
limitations. They are not able to take into account the
specific features of organs, tissues and particular
pathological cases for visualization, and as a conse-
quence for image analysis.

The purpose for developing ,Analyzer of human
tissue pathologies* is to enhance the diagnostic
capabilities of standard methods of examination of
organ and tissue damage, by:

e improving the analysis of the structure of the
tumor and other pathological areas on different
digital medical images;

e improving the analysis of tumors and
pathological areas borders on different digital
medical images;

e quantifying pathological changes in different
digital medical images;
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* identifying the quantitative dependence
between CT and MRI imaging when jointly
used.

New criteria of quantitative evaluation and formaliza-

tion of diagnostic features, such tissue structure and

density are introduced.

The pathology analyzer is a modular system, each
module of which is aimed to respond to a specific task
of image improvement, according to new criteria and
obtaining additional diagnostic information.

Decision supporting system (DSS) in
determinaton the pathology nature in the
region of interest

The DSS is an automated computer system helping
the operator to analyze and report difficult imaging
findings.

Randomly or poorly structured medical diagnos-
tic information in traditional sources, could create dif-
ficulties.

The DSS tries to minimize efforts in the analysis
of information on the nature of the pathology in the
region of interest by processing MRI and CT images.
The following tasks are intended:

* analysis of the training sample of various
features of pathologies on the basis of machine
learning algorithms;

e expert evaluation of an arbitrary set of features
based on the obtained algorithms of machine
learning;

* restoration of missing features;

e explanation of the process of obtaining the final
result.

The decision supporting system concerning the
character of the pathology in the region of interest is
one of the modules of the tool, working with different
areas of interest. Here is an example of the work of
the system, considering the lungs as an region of
interest:

A sample group of 96 patients was used to train
the system. Each patient is characterized by quan-
titative, nominal and resultant characteristics, exam-
ples of which are given in Figures 1 to 3. The total
number of symptoms was depending on the values
of the analyzed features, each of the patients be-
longed to one of 5 groups:

* cancer,

e innocent appearance;

e sarcoidosis;

e tuberculosis;

e pulmonary fibrosis.
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Fig. 1. An example of a

Fnioko3a HPOB-M(MMOR b/ n) quantitative features

Tun npuanaka: Konuuecrsennoiii (float64)
Kpartkaa cratucrmnka
count mean std min 25% 50% 75% max

Fnwoko3a kposBu(MMonb/n) 70 5.52843 0954649 39 5 55 6 9.7

Fig. 2. An example of a

®opma KoHTypa obpa3zoBaHua nominal features

Trn npn3uaka: Homunansubtii (float64)

Kpartkana cratucTuka count mean std min 25% 50% 75% max

Popma KouTypa obpa3osanna 88 2.64773 1.11458 1 2 2 4 5

YHUKaNbHbIE 3HaYEHUA PacwudpoBKa 3HAUEHUH

3uavenne Konuuectso 3uauenue Pacuwmdposka
1 12 1 PoBHbi#
2 38 2 byrpucrwbiit
3 8 3 ®decToHuaTLIH
4 29 4  Jlyuucrsiit
5 1 5 3sesnuartniit

l‘ucmnomn(m’or) Fig. 3. Example of the

o resulting features
Tun npu3naka: Homuuanshwbiit (object)

Kparkana cratucrvka count unique top freq
Fucronorus(uror) 22 15  ymepennoauddepenuupobarHHas 3
A1CHOKApUHHOMA
YHUKaNbHbIE 3HAYeHUA ¥ X pacwudposKa
3nayenue Koaunuecrso Pacundpoka
A/1IeHOKaPIHHOMA CMELIAHOrO THNA 1 3aech 10KHA GLITH
pacindpoBKa 3HAYCHHA
ramapToma 1 3aech 01KHA ObITD
pacundpoBKa 3HAYCHHA
ME/IKOK/NICTOMHAA KapuHHOMa 2 3aecb A0KHA GbITD
pacuudpoBKa 3HAYCHHA
HEMPOIHAOKPHHHAA KapUHHOMA HH3KOH 1 3aech L0KHA GbITL
anddepenunpoBry pacudppoBKa 3HAYCHHA
HEMEJIKOKNICTOYHAA KApUHHOMA 1 3aecb JOMKHA GbITL
pacun$poBKa 3HAUCHHA
HEMEJIKOKNeTOYHan 1 3aecb A0MKHA GbITH
Hu3koaudpepeHHPOBAHHAA KapUHHOMA pacundpoBKa 3HaYCHHA
HeT BepHdHKaUHK 2 3aecb A0MKHA GbITH
pacudppoBKa 3HaYEHHA
Hu3koandpepeHHpOBaHHAA aileHOKapuHoMa 2 3aecb A0/KHA GbITH
pacundpoBKa 3HaAYCHHA
Hu3KoAHPepeHUHMPOBAHHAA NAOCKOKAETOYHAaA 1 3aecb A0KHA ObITH
KapuHHOMa pacwndpoBKa 3HaYCHHA
oTrpaHHieHHbIH GOoKyc abcueanpyoueit | 3aecb ONKHA GbITD
NHEBMOHHH paciudpoBKa 3HAYCHHA
NI0CKOK/ICTOYHAA KapUHHOMA HH3KOI1 1 3aecb 10MKHA GbITH
AnddepeHupoBKH paciundpoBKa 3HAYCHHA
CBET/IOKICTOYHAA KapUHHOMA 1 3nechb L0KHA ObITH
pacundpoBKa 3HaYEHHA
can3eo6pasyouas a4eHoOKapIHHOMA 1 3aech A0/MKHA ObITH
pacwndpoBKa 3HaYEHHA

yMepenHoaHddeperupoBaHHas 3 3aechb 01KHA GbITH
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The machine learning algorithms are Decision
Tree, Random Forest. The accuracy is estimated us-
ing the SVM method [19].

The considered part of the developed decision
supporting system defines t to which of the 5 groups
of lung pathologies a patient belongs according the
set of features.

Assessment of borderlines of pathology area
by automatic detection of cerebral glioma
borders, based on MRI and CT imaging

The development of the model is related to diag-
nostic problems in imaging of oncological diseases.
The structural complexity of tumors, the limitations
of some modern methods in the image formation,
processing and analyzing limits the planning of the
surgical tumor removal.

A shortage of primary information, backed up by
visualization, reduces the possibility of total resec-
tion of tumors, which can lead to their recurrence. An
analysis model is developed taking into account the
structural features of brain gliomas.

The input data are CT and MRI digital images,
generated as discribed by loHcaaec P. Bygc, P [17].
Upon the problem to solve, under the digital image
we mean a matrix of the size M x N of the form:

0,00 f01) fON-1)
A0 fAD fA,N-1)

fay=| _ | - ()
f(M — 1,0)f(M — 1,1) f(M — i,N -1

The right side of this equality is by definition a
digital image. Each element of the matrix is called
a pixel.

The initial stages of image processing is its cor-
rection, by applying various masks, filters, linear
transformations, etc., discribed by loHcanec P. Bygc,
P [17]. As the input data are CT, MRI images, the
choice of the initial stages of image processing is
based on the properties of the type of images [18],
namely:

* images have low resolution and high degree of
noisiness;

e the ,partial volume* effect complicates the ex-
act determination the borderlines.

Property of correlation of signal to noise is gov-
erned by formula
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SNC=%, 2)

where S — average signal value; & — standard devia-
tion of background signal.

Consequently, the following stages of preliminary
image processing were selected.

Background removal

The average value of the non-uniform background 7
the image L, is calculated, since it is assumed that the
image of interest is located in the center of the frame
o -1 L
n=1~L Z n;, (3)
i—1
where n - the value of the background in the i-th ele-
ment of the resolution along the perimeter of the
image.
The summation in (3) occurs only along the perim-
eter of the rectangular image. Next, the evaluation of
the filtered image is formed according to the follow-
ing rule

Ji = Vet =iy, Sy > iy 0, mpit iy <y )

When applying this filter two or three times to an im-
age, almost the entire additive background is elimi-
nated.

Increase definition

The processed mage by the formulas (3), (4), under-
goes the Fourier transformation [17] and the transi-
tion to the spatial frequency domain F (Vv) . Than,
an increase in high spatial frequencies is made, by
raising the obtained spectrum to a power whose ex-
ponent a is in the range. (0 ... 1). This the procedure
can be written as follows:

Foaw)= [Fk—&-l(w)]a' (5)

—

Then the inverse Fourier transform of F,__ (W) and an
image with clearly defined details is obtained.

Wiener filter

Wiener filters amplify the intensity of the signal from
detected focal changes, which permits to increase
the accuracy of segmentation of pathological chang-
es. This method is less susceptible to interference.
Information on the spectral densities of image power
and noise is used.

Spectral density of signal is governed by correlation
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Sy (v) =F[R(0)], (6)

where R(CO) = j ](X)I(X - co)dx — autocorrela-
tion function.

Relative spectral density of signal is governed by
correlation

S (v) = FIR(®)], (7)

where R((o) — _[[(x)]’(x — OJ)dx — cross-correla-

tion.

In the construction of Wiener filter, the task is to mini-
mize the standard deviation of the processed image
from the object

E{[I(x,y) — 1 (x, y)]z} = min, (8)

where Ef} — expectation function.

By converting these expressions, it can be shown
that the minimum is reached when the transfer func-
tion is determined by the following expression

D)=

7
SII (Vx’v.v) ’ (9)

If there isn’t noise on the image, then spectral den-
sity of noise function is 0 and Wiener filter turns into
a normal reverse filter.

At this step, the original image acquires an im-
proved visual representation, while its processing is
automatic and with minimal loss of information about
the original image.

The next stages are image segmentation and
fractal analysis, reflecting the main specificity of the
model being developed.

The formal presentation of solved at this stage of the
subtasks.
Designations:

a array of all pixels of the image;

A = {A,} |a subarray of pixels that meet the seg-
mentation criteria

A =142 subarray of pixels that meet the
(AP sy that
criteria for fractal growing regions

S segmentation operation over a array 4

F operation of fractal growth of regions
over array of A’

K array of clusters obtained after the pro-
cedure S

K’ array of region, obtained after the pro-
cedure F :
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The subtask of the segmentation of the original im-
age has the form:

A

S(@)= Ky, ... Ki4y)) -V Ki(4) satisf ies 0= 10},

where (J - array of criteria f or the segmentation
method .

The subtask of fractal growing of regions has the
form:

FIKA) =K \A), ... K;(4)}
V K (4;) satisfies O = {Q;} n H= {H,},

where H — array of criteria for growing a fractal region.
Subtask definition of the segmentation error and the
memorization of new characteristics of regions that
meet the criteria. Formally, represent
{Ki(Ai)} - {Kj(Aj)}¢®~ (10)
Then, the segmentation in the first step performs
with an error found by estimating the difference be-
tween the boundaries of clusters and fractal regions.
It is necessary to memorize the new features of H,
Q and return to step 1, but already having additional
counted feature to perform a new iteration of seg-
mentation.
The described sub-task of the segmentation must be
performed automatically, without entering additional
conditions and static criteria. In this case, at the out-
put must be a clustered image, each cluster of which
stores information about the pixels belonging to it,
such as: the intensity of the pixel signal, knowledge
about neighboring pixels, the pixels on the bounda-
ries. Clustered image decomposition at this stage is
the preparation to fractal growth of regions from the
center of mass of automatically defined clusters.
Given the specificity of the proposed solution, we
use the algorithm for clustering fuzzy k-means [21].
Fuzzy clustering consists in finding a fuzzy partition
of the elements of the investigated set of elements
into T fuzzy clusters and the corresponding values of
the membership functions. The membership function
indicates the degree of certainty that the elements
of a certain set belong to a given fuzzy set and must
satisfy the condition

uA (ai)>0, VjE[1, T], Vai€A,

where A — analyzed image.



PeHmaeHonoeua & Paguonoeus, 2018, LVII: 46-56

The data matrix is formed from the attribute value
vectors:

D=[x'x" .. X' XXX

1 2 g1 2 q 1 2 ¢
The statement of the problem of fuzzy cluster analy-
sis is formed in this way: on the basis of the initial
data D, define a fuzzy partition of the set A into a giv-
en number of fuzzy clusters, at which the extremum
of some objective function is achieved among all the
fuzzy partitions.
Additional conditions are imposed on the member-
ship function normalization:

T
) Hp (@) =1, Va, €A,

Il

Suaa)=1, Vi[l, 7]

U

where T'E€N — number of clusters, T > 1, - absence
of empty clusters.

For each fuzzy cluster, the g-dimensional vectors of
the cluster center are introduced

c=[c,c,

i 1 2
each component of which is determined in accordance
with the equation:

L1, ViE[L T],
q

Sl @IY

. . 3 VEe{l.T} Vp€EP, (11)

where m — exponential weight.

The objective function is sum of squares of the
weighted deviations of the coordinates of the clus-
tering objects from the centers of the desired fuzzy
clusters:

(12)

€(d;¢) = f (6~ .

The task of an indistinct clustering is to find the ma-
trix U function values of accessory of a clustering ob-
jects to indistinct clusters, that providing a minimum
of target function (12).

The specificity of the proposed solution is to use the
fractal cluster estimation model to reduce the seg-
mentation error. In this case, it is necessary for each
cluster obtained to determine the characteristics of

ZZ HA(a

i=1;=1
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the local fractal model, to grow the region from the
center of the cluster, taking into account new fea-
tures, to estimate the degree of divergence of the
cluster and region boundaries, and to conduct the
repeated segmentation taking into account new in-
formation about the texture.

In Zhuang and Meng, Q. paper [15], an algorithm
for image segmentation using fractal dimension is
proposed, using wavelet-decomposition coefficients.
This method uses a feature vector composed of frac-
tal dimension estimation in 3 directions (horizontal,
diagonal and vertical) and several levels (1-3) of
wavelet decomposition. Since we are working with
discrete signals, there are a finite number of scale
values on which it is possible to calculate the esti-
mate of the fractal dimension. Thus, the sequence
of values obtained at different resolution levels and
orientations is used as a feature vector for the image
region under study.

For each element of the image (cluster), the follow-
ing formula was used

log{ > |u|\/2w}
uEWg IN®)] B
Do, (p) = log(»?) B
(13)
gl Y WNT}
uEWg [N@)]
= v s

where N(pp) €K - image window, surrounding pix-
el p inside the cluster, representing the func-
tion, for which the fractal dimension is calculated;
VE{0,....log,m} - levels of decomposition (reso-
lution) of the discrete wavelet transformation of the
cluster, ) € [horizontal, vertical, diagonal];w,,
-wavelet - image coefficients; C = log?2 - constant.
The estimation of the fractal dimension, calculat-
ed by formula (13) in this article using the wavelet
transform, is used to form a multidimensional array
of characteristics.

The growth of fractal regions occurs in the same way
as described above for the cluster analysis algo-
rithm, taking into account the addition of new char-
acteristics to the matrix

D=[x'x".. XX ... XXX
2 q 1 2 ¢

The evaluation of the areas is obtained using the
histograms of the clusters and regions obtained. If



52 EKcnepumeHmanHa paguonozus / Experimental Radiology

the same element is the cluster, but its fractal dimen-
sion, differs from the elements of the region, then it
is necessary to take this difference into account. The
procedure is repeated for each element. An array of
new features of the elements is formed.

At the last iteration of the proposed algorithm, we
get a final set of clusters and calculated fractal sizes
for each cluster.

Having constructed a histogram of the final pro-
cessed and analyzed image, the cluster describing
the region of glioma is defined as part of a histogram
with an uncharacteristic fractal distribution.

Fig. 5. Glioma area separate from background
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New approaches in the analysis of digital
chest roentgenogram

The radiogram is widely used as first method to de-
tect thorax lesions. It is used as well in screening
population. Efficient detection of pathology by chest
radiogram is essential. Some technical disadvantag-
es allow visualization limitations.

The purpose of the study is to improve the quality
of the analysis, by introduction of new metrics for as-
sessment medical X-ray image, as well a model inde-
pendent from nosology. In the model, the new met-
rics, is: value of fractal dimensionality of Minkowski
and structural characteristics of the revealed classes
of organs, tissues and their sets.

Initially the image is dividedinto clusters by SLIC su-
perpixels method on a texture.

A=@i1...an: aml ... (14)

amn) ’
where A - source image,

aij — value of the source image pixels intensity

B=(bi1b2: br),

where B- set of clusters,

(13)

bi — cluster of the textural objects received after split-
ting, k — quantity of clusters partition.

b=(4,9.9, - 4

where (] — element of cluster; / — quantity of cluster
elements.

(16)

For the appeal to cluster elements, it is necessary
to make their numbering. On all objects of one clus-
ter, comparing of objects in parameters of a texture
and distribution of intensity is executed. One of the
simplest approaches applied to the description of a
texture consists in use of the statistical characteris-
tics determined by the histogram of intensity of all
image or its area.

If the differences of the histogram of intensity and
textural characteristics are above a maximum per-
missible norm, therefore, they are critical and the im-
age has pathological sections.

For calculation of Minkowski fractal dimensional-
ity the following next steps are observed:

* objectis covered by a square grid with cells of
the known size;

e the quantity of cells in a fragment of the
researched object is counted;
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* couple of values “size (side length) of a cell”
— “quantity of the cells containing an object*
remain;

e a grid is detailed - i.e. the size of cells
decreases, and, respectively, the quantity of
the cells containing an object increases;

e anew couple of values remains;

* the procedure of detailing repeats;

e according to a method of computation of
dimensionality of Minkowski, its value will
be equal to slope of the regression line
constructed on the plane on rows of log (N)
and log(1/e) values and is calculated on a
formula (17)

D=1lim In(N g)

(17)

>

e—0 nt

where N, - the minimum number of sets with diam-

eter €, which can cover the initial set [16].

» after calculation comparing with critical is
executed.
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Fig. 6. Image filtering

1000

1500

2000 f
L

1500

0 500 1000 2000 2500

Fig. 7. Application of the Slic Superpixel classifier
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A method for analyzing MRI images based on
values normalized by the Hounsfield scale was
developed as well for quantitative evaluation of
MRI images and binding to the intensity scale.
Such a scale MRI images, then it was created ar-
tificially, based on the Hounsfield scale.

The evaluation of the MRI image is based on the
signal intensity and aimed at separating the anatom-
ical structures from the difference in contrast, includ-
ing the detection of abnormalities by the increased
or decreased signal value of the study region. In the
MRI image, the brightness of each pixel is propor-
tional to the measured MR signal.

The resulting brightness (intensity) is relative and
depends on the chosen pulse sequence and capture
times. Therefore, the intensity values from one tis-
sue differ from study to study. The intensity of the
zone of interest in MRI and CT was assessed col-
lectively, classified, and then the regression problem
was solved.

Since the intensity values in the MRl images vary,
with different protocol settings, it is necessary to pre-
sent the MRI intensity values of the image in a set of
characteristics by calculating for each pixel the inten-
sity Il* in fractions relative to the average intensity
obtained from the fat in this image:

(18)

I-1
I'=(—100)* "™
! Ifat
Values of 11* are the same for tissues of the same
nature on different T2-weighted MRI images, i.e. ob-
tained at different capture times and magnetic field
forces.
Comparing together the values of the Hounsfield
scale on the CT images and the intensity of the MRI
images in each region, a set of pairs of values (x, y)
were obtained, where x is the image Il* MRI value
and y is the corresponding CT value, for further cal-
culation of the regression in according to the select-
ed analog.
To describe the complex forms of the distributions
of the resulting pairs of values, we use the equation
of the generating model of mixture distribution [16]:

K

p(x>y):kz::1wkpk(x>y;ek)> (19)

where p_(x, y; 0,) - likelihood function of the k-th
component;

w, —eight of the k-th component of the model;
Qk — vector of distribution parameters.
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Parameter 6 = (W, >_,), where |, — expected
value, — covariancematrix. Using a mixture of
distribution will allow us to describe complex forms
of distribution of pairs of values. As a function of the
distribution density, the Gaussian distribution func-
tion (20) is used in the mixture model, and the mix-

ture model is called the Gaussian mixture.
1 (xj,txz 20—y 9 (Y’Py)z
S T

>

px,y) =
21‘50,56’,’\/ 1 —p2

where P — — correlation coefficient.

6,0,

When the mixture is separated, the parameters 6
and w are selected, so as to achieve the maximum
likelihood function. To estimate the parameters, we
use the EM algorithm [9], consisting of two stages:

1 parameter estimation:

_ iy (i)
gi]‘_ K 5

> Wi D (X750 )
=1

(21)

where xi —the i-th vector of values (X, ) in the sample,
i = 1,..,m— vector number in the sample,

J= 1,..,K — mixture component number. 2 selection
of parameters:

0,= arg max, ;gif In p,(x;;0) (22)
w,=1 Egij (23)

After evaluating the parameters for given pairs of
values, equation (8) can be used for regression. For
this, we represent the two-dimensional density dis-

3aperncTpupoBaHHble Napbl 3Ha4YeHUn
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tribution function as the product of the conditional
density y and the density x and express the condi-
tional density y:

K
p(x.p) ]Z‘lwkpk (x,0;)
peO="55 = % o
2. Wi Py (X.8;)
=1
Equation (13) in the following view:
K
plx)= 2 Wi (Op(), (25)
k=1
where
_ W)
2 wpi(x.0,)

The assumed value in units of the Hounsfield scale
from the given value of the MRI intensity can be ob-
tained as a conditional mean:

K -
F=£@)= T w0,

where

(27)

HE) = Myt Yy p Yo — 1) (28)
Thus, using the Gaussian mixture, the values
of the covariance matrix and the probability weight
were obtained, for the initial data set. Using them
in equation (13), we get the value of the Hounsfield
scale for a given x (the value of the MRI intensity).

= O X

PacueTs! 33BepeHbl.
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Color mapping is one of the methods that func-
tion in a program for processing medical images.

To solve the problems of visualization and analy-
sis of the structural features of the tissues of indi-
vidual organs and areas of interest, the color map
method, which does not have a binding to the origi-
nal ,windows"“ was used.

This palette was obtained by us through analyti-
cal and experimental studies aimed at detecting den-
sitometric indicators of various organs and tissues..

The analytical study was carried out on the basis
of scientific works devoted to the review of patholo-
gies of various organs, tissues and structures. These
works included a densitometric analysis of areas of
interest in the normal and pathological state.

Thus, information on the ranges of density values
in Hounsfield units was accumulated and analyzed.

In the study, a number of studies were analyzed
and mean values (HU) were revealed for a number
of anatomical structures [1-5, 7, 10, 12-14]. The re-
sults for the 3 areas of interest are shown in Tabl. 1:

Tabl. 1.
ROI Mean (HU) SD Mean (SD)
Lungs - 861,706 47,94909 50,552
Liver 53,4333 7,309811 18,075
Kidneys 33,39091 13,2665 8,66667

Then, an experimental study was performed dur-
ing which the areas of interest of CT studies (n =
32) provided by various medical institutions were
analyzed and evaluated. The measurements were
taken from images of different quality of various CT
devices that lack hardware artifacts and areas of in-
creased contrast (distortion due to high-density ob-
jects, such as metal structures) in freely distributed
3DSlicer software. The results for the 3 areas of in-
terest are shown in Tabl. 2.

Tabl. 2
ROI 3HaueHue (HU) SD Mean(SD)
Lungs - 853,1 39,25851 76,08
Liver 59,124 6,779891 24,1394
Kidneys 39,11 42,88443 32,5875

The resulting samples of mean values were ana-
lyzed for similarity. As a result of the analysis, the
characteristics of the samples compared to the mean
values coincide at the significance level p <0.05. In
this case, the samples consisting of the root-mean-
square deviations coincide only with the significance
level p <0.1.
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The results of the comparison suggest that there
is no significant similarity between the values ob-
tained analytically and experimentally. In this case,
the data obtained by experimental means are homo-
geneous, and the sample has a normal distribution.

Based on the experimental data obtained in a
single methodology, an information system for the
automated analysis of pathological changes was de-
veloped. X-ray density values were used to obtain
a color map. Each grayscale pixel was assigned a
color value (RGB), based on the generated color
map. The goal was not just the coloring of the ana-
tomical structure, but the use of color in order to em-
phasize the gradients between healthy and affected
tissue. Thus, for each zone of interest, it became
possible to obtain a quasi-histological visualization
taking into account healthy/diseased tissue.

An example of the program‘s work on the ,Liver*
area of interest is shown in the figures 9 —10.

Fig. 10. Diseasedliver tissue
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gists; neurosurgeons.
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